If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 36f + 18f2 + 3 = 0 Reorder the terms: 3 + 36f + 18f2 = 0 Solving 3 + 36f + 18f2 = 0 Solving for variable 'f'. Factor out the Greatest Common Factor (GCF), '3'. 3(1 + 12f + 6f2) = 0 Ignore the factor 3.Subproblem 1
Set the factor '(1 + 12f + 6f2)' equal to zero and attempt to solve: Simplifying 1 + 12f + 6f2 = 0 Solving 1 + 12f + 6f2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 0.1666666667 + 2f + f2 = 0 Move the constant term to the right: Add '-0.1666666667' to each side of the equation. 0.1666666667 + 2f + -0.1666666667 + f2 = 0 + -0.1666666667 Reorder the terms: 0.1666666667 + -0.1666666667 + 2f + f2 = 0 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + 2f + f2 = 0 + -0.1666666667 2f + f2 = 0 + -0.1666666667 Combine like terms: 0 + -0.1666666667 = -0.1666666667 2f + f2 = -0.1666666667 The f term is 2f. Take half its coefficient (1). Square it (1) and add it to both sides. Add '1' to each side of the equation. 2f + 1 + f2 = -0.1666666667 + 1 Reorder the terms: 1 + 2f + f2 = -0.1666666667 + 1 Combine like terms: -0.1666666667 + 1 = 0.8333333333 1 + 2f + f2 = 0.8333333333 Factor a perfect square on the left side: (f + 1)(f + 1) = 0.8333333333 Calculate the square root of the right side: 0.912870929 Break this problem into two subproblems by setting (f + 1) equal to 0.912870929 and -0.912870929.Subproblem 1
f + 1 = 0.912870929 Simplifying f + 1 = 0.912870929 Reorder the terms: 1 + f = 0.912870929 Solving 1 + f = 0.912870929 Solving for variable 'f'. Move all terms containing f to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + f = 0.912870929 + -1 Combine like terms: 1 + -1 = 0 0 + f = 0.912870929 + -1 f = 0.912870929 + -1 Combine like terms: 0.912870929 + -1 = -0.087129071 f = -0.087129071 Simplifying f = -0.087129071Subproblem 2
f + 1 = -0.912870929 Simplifying f + 1 = -0.912870929 Reorder the terms: 1 + f = -0.912870929 Solving 1 + f = -0.912870929 Solving for variable 'f'. Move all terms containing f to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + f = -0.912870929 + -1 Combine like terms: 1 + -1 = 0 0 + f = -0.912870929 + -1 f = -0.912870929 + -1 Combine like terms: -0.912870929 + -1 = -1.912870929 f = -1.912870929 Simplifying f = -1.912870929Solution
The solution to the problem is based on the solutions from the subproblems. f = {-0.087129071, -1.912870929}Solution
f = {-0.087129071, -1.912870929}
| 4u^2+9u+3u^2+10u= | | 14x+6y=216 | | 10y+40x-50=0 | | 2x(x+4y+5z)= | | 3x-2(4x+3)=9 | | 2z-31=-9(z+20) | | -15b^2+7b= | | 8a+6=3a-21 | | -3(4x-5)=2(5-6x)+5 | | 7y+7-y=19y+3y | | 51+21p=10 | | 30x=180x-30x | | -5/4w=-10 | | 7x=36+3x | | 6/10t=-6 | | -5(6x-7y+1)= | | 2x^2+33x-8.9= | | 43.6x-29.4=-3.5x | | 6x^2y^3-12xy^3+6y^3=0 | | l-6r=-4-3r | | X^(2/3)=8 | | F^1(x)=2sinx | | 5x^4+15x^2-50=0 | | 2/5+1/3t=2 | | 7a-35=7(7a+7) | | -8*-2y=10 | | 4t-41=2t+7 | | -4+5u-2(6u-11)= | | 6(3+6x)=20 | | m+5=m-6 | | 5+5=6+9 | | 2.2+5.2-7.3= |